H(t)=-16t^2+25t+80

Simple and best practice solution for H(t)=-16t^2+25t+80 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+25t+80 equation:



(H)=-16H^2+25H+80
We move all terms to the left:
(H)-(-16H^2+25H+80)=0
We get rid of parentheses
16H^2-25H+H-80=0
We add all the numbers together, and all the variables
16H^2-24H-80=0
a = 16; b = -24; c = -80;
Δ = b2-4ac
Δ = -242-4·16·(-80)
Δ = 5696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5696}=\sqrt{64*89}=\sqrt{64}*\sqrt{89}=8\sqrt{89}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-8\sqrt{89}}{2*16}=\frac{24-8\sqrt{89}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+8\sqrt{89}}{2*16}=\frac{24+8\sqrt{89}}{32} $

See similar equations:

| 11-10p=5.28 | | |2x-4|=8 | | -y-6=13 | | 5r+10=10 | | 3(3x+4)-5=3x+-4 | | 47,000=2-3x | | 7(2x+5)=4x-10+x | | √z​2+6z+3=3z+1 | | 4a–8=8+a | | 4x+6=2.5x+12 | | 0.04x-0.05(x+2)=0.10 | | 2-4x=-42 | | x2−23x+120=0 | | g–8=14 | | x2+6x–3=0 | | -(p+2)=2p+7 | | 2+6r+1=-9 | | 3x+3(x+1=7+2x | | 7(2x+5)=4x-9-1x | | 3+7y=-11 | | 2j+(3j+1)–3(6+j)=–1 | | 5y-7=3y-15 | | 75-(3×m)=27 | | -4(4k-1)=-60 | | (r-8)/4=2 | | 5t+15=2” | | 6k+3=8k-2k | | 5p-15=7p-5 | | -(2-x)=4(x-3) | | -6x-3.9=-7x-3.1 | | 6^3x-4=8 | | 6x+42=0 |

Equations solver categories